题目内容
已知函数f(x)=
,数列{an}满足a1=f(1),an+1=f(an)(n∈N*).
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=an•an+1,求数列{bn}的前n项和Sn,并比较Sn与
.
| x |
| 2x+1 |
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=an•an+1,求数列{bn}的前n项和Sn,并比较Sn与
| n |
| 2n+18 |
(Ⅰ)a1=f(1)=
=
,a2=f(a1)=f(
)=
=
;
(Ⅱ)∵an+1=
,
∴
=
=2+
∴
-
=2
∵a1=
,∴
=3
∴数列{
}是首项为3,公差为2的等差数列,
∴
=2n+1,
∴an=
(Ⅲ)bn=an•an+1=
=
(
-
),
∴Sn=
(
-
+
-
+…+
-
)=
n=1时,S1=
,
=
,Sn大于
;
n=2时,S2=
,
=
,Sn大于
,
n=3时,S3=
,
=
,Sn小于
;
n=4时,S4=
,
=
,Sn大于
;
猜想n≥4时,Sn大于
;
证明如下:①n=4时,S4=
,
=
,Sn大于
,结论成立;
②假设n=k时,结论成立,即
>
,∴2k>6k-9
n=k+1时,有2k+1+18>2(6k-9)+18>6(k+1)+9,
∴
>
,结论成立
由①②可知,结论成立.
| 1 |
| 2+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| ||
|
| 1 |
| 5 |
(Ⅱ)∵an+1=
| an |
| 2an+1 |
∴
| 1 |
| an+1 |
| 2an+1 |
| an |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∵a1=
| 1 |
| 3 |
| 1 |
| a1 |
∴数列{
| 1 |
| an |
∴
| 1 |
| an |
∴an=
| 1 |
| 2n+1 |
(Ⅲ)bn=an•an+1=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| n |
| 6n+9 |
n=1时,S1=
| 1 |
| 15 |
| n |
| 2n+18 |
| 1 |
| 20 |
| n |
| 2n+18 |
n=2时,S2=
| 2 |
| 21 |
| n |
| 2n+18 |
| 1 |
| 11 |
| n |
| 2n+18 |
n=3时,S3=
| 1 |
| 9 |
| n |
| 2n+18 |
| 3 |
| 26 |
| n |
| 2n+18 |
n=4时,S4=
| 4 |
| 33 |
| n |
| 2n+18 |
| 2 |
| 17 |
| n |
| 2n+18 |
猜想n≥4时,Sn大于
| n |
| 2n+18 |
证明如下:①n=4时,S4=
| 4 |
| 33 |
| n |
| 2n+18 |
| 2 |
| 17 |
| n |
| 2n+18 |
②假设n=k时,结论成立,即
| k |
| 6k+9 |
| k |
| 2k+18 |
n=k+1时,有2k+1+18>2(6k-9)+18>6(k+1)+9,
∴
| k+1 |
| 6(k+1)+9 |
| k+1 |
| 2k+1+18 |
由①②可知,结论成立.
练习册系列答案
相关题目