题目内容
数列{an}的前n项的和为Sn,对于任意的自然数an>0,4Sn=(an+1)2
(Ⅰ)求证:数列{an}是等差数列,并求通项公式
(Ⅱ)设bn=
,求和Tn=b1+b2+…+bn.
(Ⅰ)求证:数列{an}是等差数列,并求通项公式
(Ⅱ)设bn=
| an | 3n |
分析:(Ⅰ)令n=1求出首项,然后根据4an=4Sn-4Sn-1进行化简得an-an-1=2,从而得到数列{an}是等差数列,直接求出通项公式即可;
(Ⅱ)确定数列通项,利用错位相减法,可求数列的和.
(Ⅱ)确定数列通项,利用错位相减法,可求数列的和.
解答:(Ⅰ)证明:∵4S1=4a1=(a1+1)2,∴a1=1.
当n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2,
∴2(an+an-1)=an2-an-12,
又{an}各项均为正数,∴an-an-1=2,
∴数列{an}是等差数列,
∴an=2n-1;
(Ⅱ)解:bn=
=
∴Tn=b1+b2+…+bn=
+
+…+
---①
∴
Tn=
+
+…+
+
---②
①-②
Tn=
+2(
+
+…+
)-
=
-
∴Tn=1-
-
.
当n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2,
∴2(an+an-1)=an2-an-12,
又{an}各项均为正数,∴an-an-1=2,
∴数列{an}是等差数列,
∴an=2n-1;
(Ⅱ)解:bn=
| an |
| 3n |
| 2n-1 |
| 3n |
∴Tn=b1+b2+…+bn=
| 1 |
| 31 |
| 3 |
| 32 |
| 2n-1 |
| 3n |
∴
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
①-②
| 2 |
| 3 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
| 2 |
| 3 |
| 2n+2 |
| 3n+1 |
∴Tn=1-
| 2 |
| 3 |
| n+1 |
| 3n |
点评:本题主要考查了数列的递推关系,考查数列的通项与求和,确定数列的通项是关键.
练习册系列答案
相关题目