题目内容
【题目】为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为:
,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.
(1)当
时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少.
【答案】(1)国家至少需要补贴700万元,该工厂才不会亏损;(2)当处理量为
吨时,每吨的平均处理成本最少.
【解析】
试题(1)利用每处理一吨二氧化碳可得价值为20万元的某种化工产品,及处理成本
(万元)与处理量
(吨)之间的函数关系,可得利润函数,利用配方法,即可求得结论;(2)求得二氧化碳的每吨平均处理成本函数是分段函数,再分段求出函数的最值,比较其大小,即可求得结论.
试题解析:(Ⅰ)当
时,设该工厂获利为
,则
,所以当
时,
,因此,该工厂不会获利,所以国家至少需要补贴700万元,该工厂才不会亏损; 5分
(Ⅱ)由题意可知,二氧化碳的每吨平均处理成本为
6分
(1)当
时,
,所以
,因为
,所以当
时,
,
为减函数;当
时,
,
为增函数,所以当
时,
取得极小值
. 9分
(2)当
时,
,当且仅当
,即
时,
取最小值
, 12分
因为
,所以当处理量为
吨时,每吨的平均处理成本最少. 13分
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:万元)对年销售量
(单位:
)的影响,对近
年的年宣传费
和年销售量
作了初步统计和处理,得到的数据如下:
年宣传费 |
|
|
|
|
年销售量 |
|
|
|
|
,
.
![]()
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出
关于
的线性回归方程
;
(3)若公司计划下一年度投入宣传费
万元,试预测年销售量
的值.
参考公式![]()
【题目】某公司为了解用户对其产品的满意度,从某地区随机调查了100个用户,得到用户对产品的满意度评分频率分布表如下:
组别 | 分组 | 频数 | 频率 |
第一组 |
| 10 | 0.1 |
第二组 |
| 20 | 0.2 |
第三组 |
| 40 | 0.4 |
第四组 |
| 25 | 0.25 |
第五组 |
| 5 | 0.05 |
合计 | 100 | 1 |
(1)根据上面的频率分布表,估计该地区用户对产品的满意度评分超过70分的概率;
(2)请由频率分布表中数据计算众数、中位数,平均数,根据样本估计总体的思想,若平均分低于75分,视为不满意.判断该地区用户对产品是否满意?
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有
人,现采用分层抽样的方法,从该单位上述员工中抽取
人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为
.享受情况如右表,其中“
”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件
发生的概率.