题目内容
已知数列{an}满足a1=2,an+1=2(1+
)2an.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn.
| 1 | n |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn.
分析:(Ⅰ)利用数列递推式,可得{
}是首项为2,公比为2的等比数列,由此可求数列{an}的通项公式;
(Ⅱ)利用两次错位相减法,即可求数列{an}的前n项和Sn.
| an |
| n2 |
(Ⅱ)利用两次错位相减法,即可求数列{an}的前n项和Sn.
解答:解:(Ⅰ)∵an+1=2(1+
)2an,∴
=2×
,
∵a1=2,∴{
}是首项为2,公比为2的等比数列,∴
=2n
∴数列{an}的通项公式为an=n2×2n;
(Ⅱ)Sn=2×12+22×22+…+n2×2n①
①×2可得2Sn=22×12+23×22+…+n2×2n+1②
①-②可得-Sn=2×1+22×3+…+2n×(2n-1)-n2×2n+1③
③×2可得-2Sn=22×1+23×3+…+2n+1×(2n-1)-n2×2n+2④
③-④,可得Sn=2+22×2+23×2+…+2n×2-2n×(2n-1)-n2×2n+1+n2×2n+2
=2+
+2n+1(n2-2n+1)=2n+1(n2-2n+3)-6
∴Sn═2n+1(n2-2n+3)-6
| 1 |
| n |
| an+1 |
| (n+1)2 |
| an |
| n2 |
∵a1=2,∴{
| an |
| n2 |
| an |
| n2 |
∴数列{an}的通项公式为an=n2×2n;
(Ⅱ)Sn=2×12+22×22+…+n2×2n①
①×2可得2Sn=22×12+23×22+…+n2×2n+1②
①-②可得-Sn=2×1+22×3+…+2n×(2n-1)-n2×2n+1③
③×2可得-2Sn=22×1+23×3+…+2n+1×(2n-1)-n2×2n+2④
③-④,可得Sn=2+22×2+23×2+…+2n×2-2n×(2n-1)-n2×2n+1+n2×2n+2
=2+
| 23(2n-1-1) |
| 2-1 |
∴Sn═2n+1(n2-2n+3)-6
点评:本题考查数列递推式,考查数列的通项,考查错位相减法求数列的和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目