题目内容

已知数列{an}满足a1=2,an+1=2(1+
1n
)2
an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
分析:(Ⅰ)利用数列递推式,可得{
an
n2
}是首项为2,公比为2的等比数列,由此可求数列{an}的通项公式;
(Ⅱ)利用两次错位相减法,即可求数列{an}的前n项和Sn
解答:解:(Ⅰ)∵an+1=2(1+
1
n
)2
an,∴
an+1
(n+1)2
=2×
an
n2

∵a1=2,∴{
an
n2
}是首项为2,公比为2的等比数列,∴
an
n2
=2n

∴数列{an}的通项公式为an=n2×2n
(Ⅱ)Sn=2×12+22×22+…+n2×2n
①×2可得2Sn=22×12+23×22+…+n2×2n+1
①-②可得-Sn=2×1+22×3+…+2n×(2n-1)-n2×2n+1
③×2可得-2Sn=22×1+23×3+…+2n+1×(2n-1)-n2×2n+2
③-④,可得Sn=2+22×2+23×2+…+2n×2-2n×(2n-1)-n2×2n+1+n2×2n+2
=2+
23(2n-1-1)
2-1
+2n+1(n2-2n+1)
=2n+1(n2-2n+3)-6
∴Sn═2n+1(n2-2n+3)-6
点评:本题考查数列递推式,考查数列的通项,考查错位相减法求数列的和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网