题目内容
已知数列{an}的前n项和Sn=2an-2n+1+2(n∈N*).(Ⅰ)设bn=
| an |
| 2n |
(Ⅱ)令cn=
| n(n+1) |
| an |
分析:(Ⅰ)由Sn=2an-2n+1+2,得Sn-1=2an-1-2n+2,两式作差变形可得,要注意n=1的情况.
(Ⅱ)由(Ⅰ)知cn=
=(n+1)(
)n,表示Tn=2×
+3×(
)2+4×(
)3++(n+1)(
)n观察结构,用错位相减法求解.
(Ⅱ)由(Ⅰ)知cn=
| n(n+1) |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(Ⅰ)在Sn=2an-2n+1+2中,令n=1,可得S1=2a1-22+2,即a1=2
当n≥2时,Sn-1=2an-1-2n+2,则an=Sn-Sn-1=2an-2an-1-2n∴an=2an-1+2n,即
=
+1
∵bn=
∴bn=bn-1+1,即当n≥2时,bn-bn-1=1
又b1=
=1∴数列{bn}是首项和公差均为1的等差数列
于是bn=1+(n-1)•1=n(n∈N*),
从而an=2n•bn=n•2n(n∈N*)
(Ⅱ)由(Ⅰ)得cn=
=(n+1)(
)n,
所以Tn=2×
+3×(
)2+4×(
)3++(n+1)(
)n
Tn=2×(
)2+3×(
)3+4×(
)4++(n+1)(
)n+1
两式相减得
Tn=1+(
)2+(
)3++(
)n-(n+1)(
)n+1
=1+
-(n+1)(
)n+1=
-
∴Tn=3-
∵Tn+1-Tn=
-
=
>0
∴数列{Tn}是增数列故Tn≥T1=3-
=1,命题得证.
当n≥2时,Sn-1=2an-1-2n+2,则an=Sn-Sn-1=2an-2an-1-2n∴an=2an-1+2n,即
| an |
| 2n |
| an-1 |
| 2n-1 |
∵bn=
| an |
| 2n |
又b1=
| a1 |
| 2 |
于是bn=1+(n-1)•1=n(n∈N*),
从而an=2n•bn=n•2n(n∈N*)
(Ⅱ)由(Ⅰ)得cn=
| n(n+1) |
| an |
| 1 |
| 2 |
所以Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+
| ||||
1-
|
| 1 |
| 2 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
∴Tn=3-
| n+3 |
| 2n |
∵Tn+1-Tn=
| n+3 |
| 2n |
| n+4 |
| 2n+1 |
| n+2 |
| 2n+1 |
∴数列{Tn}是增数列故Tn≥T1=3-
| 4 |
| 2 |
点评:本题主要考查数列的转化与变形求通项公式及用错位相减法求前n项和.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |