题目内容
【题目】在
中,角
所对的边分别为
,已知
.
(1)求角
的大小;
(2)若
,且
,求
边;
(3)若
,求
周长的最大值.
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:(1)由正弦定理化简题中给出的等式,再根据余弦定理可求出角
;(2)由正弦定理和三角形的面积公司可求出
,再用余弦定理求出b边;(3)由余弦定理和基本不等式放缩即可求得三角形周长的最大值.
试题解析:
(1)
中,因为
,所以
,
所以
,
所以![]()
所以
,
所以
.
(2)由正弦定理得:
,
又
,得
,所以
,所以![]()
又由余弦定理: ![]()
所以![]()
(3)由余弦定理:
![]()
所以
,当且仅当
时等号成立.
故
,即周长最大值为
.
点睛:本题考查正余弦定理解决三角形问题以及基本不等式的应用. 在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.
练习册系列答案
相关题目
【题目】某单位有车牌尾号为
的汽车
和尾号为
的汽车
,两车分属于两个独立业务部分.对一段时间内两辆汽车的用车记录进行统计,在非限行日,
车日出车频率
,
车日出车频率
.该地区汽车限行规定如下:
车尾号 |
|
|
|
|
|
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且
,
两车出车相互独立.
(I)求该单位在星期一恰好出车一台的概率.
(II)设
表示该单位在星期一与星期二两天的出车台数之和,求
的分布列及其数学期望
.