题目内容

已知函数f(x)=2(m+1)x2+4mx+2m-1
(1)当m取何值时,函数的图象与x轴有两个零点;
(2)如果函数至少有一个零点在原点的右侧,求m的值.
(1)函数f(x)的图象与x轴有两个零点,即方程2(m+1)x2+4mx+2m-1=0有两个不相等的实根,
△=16m2-8(m+1)(2m-1)>0
2(m+1)≠0
得m<1且m≠-1
∴当m<1且m≠-1时,函数f(x)的图象与x轴有两个零点.
(2)m=-1时,则f(x)=-4x-3
从而由-4x-3=0得x=-
3
4
<0

∴函数的零点不在原点的右侧,
故m≠-1
当m≠-1时,有两种情况:
①原点的两侧各有一个,则
△=16m2-8(m+1)(2m-1)>0
x1x2=
2m-1
2(m+1)
<0

解得-1<m<
1
2

②都在原点的右侧,则
△=16m2-8(m+1)(2m-1)≥0
x1+x2=-
4m
2(m+1)
>0
x1x2=
2m-1
2(m+1)
>0
 
解得m∈∅
综①②可得m∈(-1,
1
2
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网