题目内容

设双曲线H: -=1(a>0,b>0)满足如下条件:①ab=;②直线l过右焦点F,斜率为,交y轴于点P,线段PF交H于Q,且|PQ|∶|QF|=2∶1.求双曲线的方程.

解:设c=,则F(c,0),l的方程y=(x-c),

令x=0,得P(0,-c).

设Q(x0,y0),则由λ==2,有x0=c,y0=-c.

∵Q在H上,

(c)2-()2=1,

(1+)-(+1)=1.

令t=,则上式变为(1+t)-(1+)=1,

16t2-41t-21=0.

∴t=3,t=-(舍去).

=3,又ab=,

∴b2=3,a2=1.

∴H的方程是x2-=1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网