题目内容
已知函数f(x)=sin2x+2
sin(x+
)cos(x-
)-cos2x-
.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)求f(x)在(-
,
)上的值域.
(3)若A∈(-
,
),且f(A)=
,求A.
| 3 |
| π |
| 4 |
| π |
| 4 |
| 3 |
(1)求函数f(x)的最小正周期和单调递减区间;
(2)求f(x)在(-
| π |
| 12 |
| π |
| 2 |
(3)若A∈(-
| π |
| 12 |
| π |
| 2 |
| 3 |
分析:先对函数f(x)化简,将其整理成f(x)=2sin(2x-
)
(1)由周期公式及ω=2,周期易求;由正弦函数的性质,令2kπ+
≤2x-
≤2kπ+
,k∈Z,解出x的取值范围即得到函数的递减区间;
(2)当x∈(-
,
),有-
<2x-
<
,然后求出sin(2x-
)的范围,进而可求
(3)由f(A)=2sin(2A-
)=
,结合A的范围可得2A-
=
或2A-
=
,可求A
| π |
| 6 |
(1)由周期公式及ω=2,周期易求;由正弦函数的性质,令2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
(2)当x∈(-
| π |
| 12 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
(3)由f(A)=2sin(2A-
| π |
| 6 |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
解答:解:(1)∵f(x)=sin2x+2
sin(x+
)cos(x-
)-cos2x-
=2
sin2(x+
)-cos2x-
=
sin2x-cos2x=2sin(2x-
)
故函数f(x)的最小正周期T=
=π
令2kπ+
≤2x-
≤2kπ+
,k∈Z,得kπ+
≤x≤kπ+
(k∈Z)
故f(x)的单调递减区间为[kπ+
,kπ+
](k∈Z).
(2)当x∈(-
,
),有-
<2x-
<
故sin(2x-
)∈(-
,1].
所以f(x)在(-
,
)上的值域是(-
,2].
(3)若A∈(-
,
),2A-
∈(-
,
)
∵f(A)=2sin(2A-
)=
,
∴sin(2A-
)=
∴2A-
=
或2A-
=
解得A=
或A=
| 3 |
| π |
| 4 |
| π |
| 4 |
| 3 |
=2
| 3 |
| π |
| 4 |
| 3 |
| 3 |
| π |
| 6 |
故函数f(x)的最小正周期T=
| 2π |
| 2 |
令2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
故f(x)的单调递减区间为[kπ+
| π |
| 3 |
| 5π |
| 6 |
(2)当x∈(-
| π |
| 12 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
故sin(2x-
| π |
| 6 |
| ||
| 2 |
所以f(x)在(-
| π |
| 12 |
| π |
| 2 |
| 3 |
(3)若A∈(-
| π |
| 12 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
∵f(A)=2sin(2A-
| π |
| 6 |
| 3 |
∴sin(2A-
| π |
| 6 |
| ||
| 2 |
∴2A-
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
解得A=
| π |
| 4 |
| 5π |
| 12 |
点评:本题考查三角函数中的恒等变换应用,解题的关键是熟练掌握三角恒等变换公式,利用公式进行化简,熟练掌握正弦函数的性质也很关键.
练习册系列答案
相关题目