题目内容
已知双曲线x2-| y2 | 2 |
(1)求直线AB的方程;
(2)若Q(1,1),证明不存在以Q为中点的弦.
分析:(1)设出过P(1,2)点的直线AB方程,然后代入双曲线方程,利用设而不求韦达定理求出k的值,求出AB的方程即可.
(2)按照(1)的方法,求出k=2,此时,△<0,所以这样的直线不存在.
(2)按照(1)的方法,求出k=2,此时,△<0,所以这样的直线不存在.
解答:解:(1)设过P(1,2)点的直线AB方程为y-2=k(x-1),
代入双曲线方程得
(2-k2)x2+(2k2-4k)x-(k4-4k+6)=0.
设A(x1,y1),B(x2,y2),
则有x1+x2=-
,
由已知
=xp=1,
∴
=2.解得k=1.
又k=1时,△=16>0,从而直线AB方程为x-y+1=0.
(2)证明:按同样方法求得k=2,
而当k=2时,△<0,
所以这样的直线不存在.
代入双曲线方程得
(2-k2)x2+(2k2-4k)x-(k4-4k+6)=0.
设A(x1,y1),B(x2,y2),
则有x1+x2=-
| 2k2-4k |
| 2-k2 |
由已知
| x1+x2 |
| 2 |
∴
| 2k2-4k |
| k2-2 |
又k=1时,△=16>0,从而直线AB方程为x-y+1=0.
(2)证明:按同样方法求得k=2,
而当k=2时,△<0,
所以这样的直线不存在.
点评:本题考查双曲线的运用,以及直线的一般式,通过直线与双曲线的方程的联立,通过设而不求韦达定理解题,属于中档题.
练习册系列答案
相关题目
已知双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,双曲线在第一象限的图象上有一点P,∠PAB=α,∠PBA=β,∠APB=γ,则( )
| A、tanα+tanβ+tanγ=0 | B、tanα+tanβ-tanγ=0 | C、tanα+tanβ+2tanγ=0 | D、tanα+tanβ-2tanγ=0 |