题目内容
将(1-| 1 |
| x2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2010 |
分析:利用二项展开式的通项公式求出展开式中x-4的系数an,求其倒数并将其裂成两项的差,利用裂项法求出和.
解答:解:an=
=
∴
=
=2(
-
)
∴
+
+…+
=2[(1-
)+(
-
)+(
-
)+…+(
-
)]
=2(1-
)
=
故答案为
| C | 2 n |
| n(n-1) |
| 2 |
∴
| 1 |
| an |
| 2 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2010 |
=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2009 |
| 1 |
| 2010 |
=2(1-
| 1 |
| 2010 |
=
| 2009 |
| 1005 |
故答案为
| 2009 |
| 1005 |
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题;通过裂项法求数列的前n项和.
练习册系列答案
相关题目