题目内容
若| a |
| b |
| c |
| a |
| b |
| b |
| c |
| a |
| b |
分析:用向量的分配律,实数与向量相乘满足结合律化简求值.
解答:解:原式=3
+6
-6
-2
-2
-2
=
-2(
+
)=-
故答案为-
| a |
| b |
| b |
| c |
| a |
| b |
=
| a |
| b |
| c |
| a |
故答案为-
| a |
点评:向量的运算满足交换律、分配律,不满足结合律,但实数与向量相乘满足结合律.一定要注意.
练习册系列答案
相关题目
题目内容
若| a |
| b |
| c |
| a |
| b |
| b |
| c |
| a |
| b |
| a |
| b |
| b |
| c |
| a |
| b |
| a |
| b |
| c |
| a |
| a |