ÌâÄ¿ÄÚÈÝ
3£®ÁÉÄþºÅº½Ä¸¼ÍÄîÕ´Ó2012Äê10ÔÂ5ÈÕÆð¿ªÊ¼ÉÏÊУ®Í¨¹ýÊг¡µ÷²é£¬µÃµ½¸Ã¼ÍÄîÕÂÿ1öµÄÊг¡¼Ûy£¨µ¥Î»£ºÔª£©ÓëÉÏÊÐʱ¼äx£¨µ¥Î»£ºÌ죩µÄÊý¾ÝÈçÏ£º| ÉÏÊÐʱ¼äxÌì | 4 | 10 | 36 |
| Êг¡¼ÛyÔª | 90 | 51 | 90 |
£¨1£©ÇóÁÉÄþºÅº½Ä¸¼ÍÄîÕÂÊг¡¼Û×îµÍʱµÄÉÏÊÐÌìÊý¼°×îµÍµÄ¼Û¸ñ£»
£¨2£©Èô¶ÔÈÎÒâʵÊýk£¬¹ØÓÚxµÄ·½³Ìf£¨x£©=kx+2m+120ÔÚʵÊý¼¯ÉϺãÓÐÁ½¸öÏàÒìµÄʵ¸ù£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓÉÒÑÖªÖÐÿ1öµÄÊг¡¼Ûy£¨µ¥Î»£ºÔª£©ÓëÉÏÊÐʱ¼äx£¨µ¥Î»£ºÌ죩µÄÊý¾Ý£¬´úÈëf£¨x£©=ax2+bx+c£¬¹¹Ôì·½³Ì×飬½â·½³Ì×éÇó³ö²ÎÊý£¬¿ÉµÃº¯ÊýµÄ½âÎöʽ£¬½ø¶ø½áºÏ¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖʵõ½ÁÉÄþºÅº½Ä¸¼ÍÄîÕÂÊг¡¼Û×îµÍʱµÄÉÏÊÐÌìÊý¼°×îµÍµÄ¼Û¸ñ£»
£¨2£©Èô·½³Ìf£¨x£©=kx+2m+120ºãÓÐÁ½¸öÏàÒìµÄÁãµã£¬Ôò¶ÔÓ¦µÄ¡÷£¾0£¬Óɴ˹¹Ôì¹ØÓÚmµÄ²»µÈʽ£¬½â²»µÈʽ¿ÉµÃmµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©°Ñµã£¨4£¬90£©£¬£¨10£¬51£©£¬£¨36£¬90£©´úÈë·½³Ì
µÃ$\left\{\begin{array}{l}{16a+4b+c=90}\\{100a+10b+c=51}\\{a•3{6}^{2}+36b+c=90}\end{array}\right.$£¬¡àa=$\frac{1}{4}$£¬b=-10£¬c=126
¡àf£¨x£©=$\frac{1}{4}$x2-10x+126=$\frac{1}{4}$£¨x-20£©2+26
¡àµ±x=20ʱ£¬yÓÐ×îСֵ£¬ymin=26£®
¹ÊÁÉÄþºÅº½Ä¸¼ÍÄîÕÂÊг¡¼Û×îµÍʱµÄÉÏÊÐÌìÊýΪ20Ì죬×îµÍ¼Û¸ñΪ26Ôª¡£¨6·Ö£©
£¨2£©f£¨x£©=$\frac{1}{4}$x2-10x+126£¬
ÓÖ¡ßf£¨x£©=kx+2m+120ºãÓÐÁ½¸öÏàÒìµÄʵ¸ù£¬
Ôò$\frac{1}{4}$x2-£¨k+10£©x+6-2m=0ºãÓÐÁ½¸öÏàÒìµÄʵ¸ù£¬
¡à¡÷1=[-£¨k+10£©]2-$4¡Á\frac{1}{4}¡Á£¨6-2m£©$£¾0ºã³ÉÁ¢£¬¼´k2+20k+2m+94£¾0¶Ôk¡ÊRºã³ÉÁ¢£¬
¡à¡÷2=202-4£¨2m+94£©£¼0£¬½âµÃm£¾3£®
¹ÊmµÄȡֵ·¶Î§Îª£¨3£¬+¡Þ£©£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǺ¯ÊýµÄÓ¦Ó㬴ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬º¯ÊýµÄÁãµã£¬·½³Ì¸ùµÄ´æÔÚÐÔ¼°¸öÊýµÄÅжϣ¬ÄѶÈÖеµ£®
| A£® | £¨0£¬+¡Þ£© | B£® | [0£¬1] | C£® | £¨0£¬1] | D£® | £¨0£¬1£© |
| A£® | -2 | B£® | -1 | C£® | 2 | D£® | 1 |
| A£® | {1£¬2£¬3£¬4£¬6£¬7} | B£® | {1£¬2£¬5} | C£® | {3£¬5£¬7} | D£® | {6} |
| A£® | -6 | B£® | -2 | C£® | 2 | D£® | 6 |