题目内容

已知二次函数f(x)满足条件f(0)=1和f(x+1)-f(x)=2x.

(1)求f(x);

(2)求f(x)在区间[-1,1]上的最大值和最小值.

 (1)设f(x)=ax2bxc,由f(0)=1可知c=1.

f(x+1)-f(x)=[a(x+1)2b(x+1)+c]-(ax2bxc)=2axab.

由已知f(x+1)-f(x)=2x,可得2a=2,ab=0.因而a=1,b=-1.

f(x)=x2x+1.

(2)∵f(x)=x2x+1=2

∈[-1,1].

∴当x∈[-1,1]时f(x)的最小值是f

f(x)的最大值是f(-1)=3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网