题目内容
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.
(1)求数列{an}的通项公式;
(2)求Sn值.
(1)求数列{an}的通项公式;
(2)求Sn值.
分析:(1)利用数列递推式,再写一式,两式相减,可得数列{an}是以3为首项,2为公差的等差数列,从而可求数列{an}的通项公式;
(2)利用等差数列的求和公式,可得结论.
(2)利用等差数列的求和公式,可得结论.
解答:解:(1)当n=1时,a1=s1=
+
a1-
,解出a1=3,
又4Sn=an2+2an-3 ①
当n≥2时,4sn-1=
+2an-1-3 ②…(4分)
①-②:4an=
-
+2(an-an-1),即
-
-2(an+an-1)=0,
∴(
+an-1)(an-an-1-2)=0,
∵an+an-1>0,∴an-an-1=2(n≥2),…(6分)
∴数列{an}是以3为首项,2为公差的等差数列,
∴an=3+2(n-1)=2n+1. …(7分)
(2)由(1)知an=2n+1,∴数列{an}是以3为首项,2为公差的等差数列,
∴Sn=3n+
=n(n+2)=n2+2n…..(12分)
| 1 |
| 4 |
| a | 2 1 |
| 1 |
| 2 |
| 3 |
| 4 |
又4Sn=an2+2an-3 ①
当n≥2时,4sn-1=
| a | 2 n-1 |
①-②:4an=
| a | 2 n |
| a | 2 n-1 |
| a | 2 n |
| a | 2 n-1 |
∴(
| a | n |
∵an+an-1>0,∴an-an-1=2(n≥2),…(6分)
∴数列{an}是以3为首项,2为公差的等差数列,
∴an=3+2(n-1)=2n+1. …(7分)
(2)由(1)知an=2n+1,∴数列{an}是以3为首项,2为公差的等差数列,
∴Sn=3n+
| n(3+2n+1) |
| 2 |
点评:本题考查数列递推式,考查数列的通项与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目