题目内容

如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.
证明:(1)设AC∩BD=H,连接EH,
因为H为正方形ABCD对角线的交点,所以H为AC中点,
又E为PC中点,
所以EH为△PAC中位线,
EHPA,
EH?平面BDE,PA?平面BDE,
所以PA平面BDE.
(2)因为AC、BD为正方形ABCD的对角线,
所以AC⊥BD,
又PD⊥平面ABCD,AC?平面ABCD,
所以PD⊥AC,
又PD∩BD=D,
所以AC⊥平面PDB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网