题目内容
【题目】已知函数![]()
.
(1)证明:当
时,
有最小值,无最大值;
(2)若在区间
上方程
恰有一个实数根,求
的取值范围.
【答案】(1)证明见解析;(2)
.
【解析】
(1)当
,求
,进而求出单调区间,极小值,即可证明结论;
(2)分离参数转化为
,令
,求
与
只有一个交点时,
的范围,通过求导求出
在
单调区间,作出图象,数形结合即可求解.
(1)当
时,
,
当
恒成立,
当
,
单调递增,
,
所以存在的
,使得
,
在
单调递减,在
单调递增,
当
时,
取得极小值,也是最小值,
当
时,
,
所以
有最小值
,无最大值;
(2)方程
恰有一实根,
恰有一实根,
与
恰有一个公共点,
,
令
或
,
当
时,
,
当
时,
,
在
上单调递增,在
上单调递减,
在
上单调递增,即极大值为
,
极小值为
,
做出
在
上的图象,如下图所示,
又
与
恰有一个公共点,
的取值范围是
.
![]()
练习册系列答案
相关题目
【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).
文学类专栏 | 科普类专栏 | 其他类专栏 | |
文学类图书 | 100 | 40 | 10 |
科普类图书 | 30 | 200 | 30 |
其他图书 | 20 | 10 | 60 |
(1)根据统计数据估计文学类图书分类正确的概率;
(2)根据统计数据估计图书分类错误的概率.