题目内容

已知各项均为正数的数列{an}满足:
a1+2a2+3a3+…+nan
n
=
(a1+1)an
3
(n∈N*)

(I)求a1,a2,a3的值,猜测an的表达式并给予证明;
(II)求证:sin
π
an
2
an

(III)设数列{sin
π
anan+1
}
的前n项和为Sn,求证:
1
3
Sn
π
2
(Ⅰ)a1=2,a2=3,a3=4,猜测:an=n+1
下用数学归纳法
①当n=1时,a1=1+1=2,猜想成立;
②假设当n=k(k≥1)时猜想成立,即ak=k+1
由条件a1+2a2+3a3+…+nan=
n(an+1)an
3
a1+2a2+3a3+…+(n-1)an-1=
(n-1)(an-1+1)an-1
3
(n≥2)

两式相减得:nan=
n(an+1)an
3
-
(n-1)(an-1+1)an-1
3

则当n=k+1时,(k+1)ak+1=
(k+1)(ak+1+1)
3
-
k(ak+1)ak
3
?
a2k+1
-2ak+1-k(k+2)=0
∴ak+1=k+2即当n=k+1时,猜想也成立
故对一切的n∈N*,an=n+1成立
(Ⅱ)设f(x)=sinx-
2
π
x(0<x<
π
2
)

f′(x)=cosx-
2
π
=0?x=arccos
2
π

由y=cosx的单调性知f(x)在(0,
π
2
]
内有且只有一个极大值点,
f(0)=f(
π
2
)=0
在(0,
π
3
)内f(x)>0

sinx>
2
π
x(0<x<
π
2
)

x=
π
an
,当n≥2
时有
π
an
∈(0,
π
2
)
,∴sin
π
an
2
an

又当n=1时,
π
an
=
π
2
,∴sin
π
an
=
2
an
sin
π
an
2
an
(n∈N*)

(Ⅲ)∵anan+1≥6,∴
1
anan+1
∈(0,
π
2
)

由(Ⅱ)可知sin
π
anan+1
2
anan+1
Sn=sin
π
2•3
+sin
π
3•4
+…+sin
π
(n+1)•(n+2)
>2(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
)=2(
1
2
-
1
n+2
)≥
1
3

即对一切n∈N*Sn
1
3

又∵在(0,
π
2
)内sinx<x
Sn=sin
π
2•3
+sin
π
3•4
+…+sin
π
(n+1)•(n+2)
<π(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
)=π(
1
2
-
1
n+2
)<
π
2

即对一切n∈N*Sn
π
2
.∴
1
3
Sn
π
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网