题目内容

已知函数f(x)=(x-1)2-aln|x-1|(a∈R,a≠0).
(Ⅰ)当a=8时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[e+1,e2+1]上的最小值.
(Ⅰ)
(1)当x>1时,f(x)=(x-1)2-8ln(x-1),f′(x)=2(x-1)-
8
x-1
=
2(x-1)2-8
x-1

由f'(x)>0得2(x-1)2-8>0,解得x>3或x<-1.
注意到x>1,所以函数f(x)的单调递增区间是(3,+∞).
由f'(x)<0得2(x-1)2-8<0,解得-1<x<3,
注意到x>1,所以函数f(x)的单调递减区间是(1,3).
(2)当x<1时,f(x)=(x-1)2-8ln(1-x),
f′(x)=2(x-1)+
8
1-x
=
-2(x-1)2+8
1-x

由f'(x)>0得2(x-1)2-8<0,解得-1<x<3,
注意到x<1,所以函数f(x)的单调递增区间是(-1,1).
由f'(x)<0得2(x-1)2-8>0,解得x>3或x<-1,
由x<1,所以函数f(x)的单调递减区间是(-∞,-1).
综上所述,函数f(x)的单调递增区间是(-1,1),(3,+∞);
单调递减区间是(-∞,-1),(1,3).(5分)

(Ⅱ)当x∈[e+1,e2+1]时,f(x)=(x-1)2-aln(x-1),
所以f′(x)=2(x-1)-
a
x-1
=
2(x-1)2-a
x-1
=
2x2-4x+2-a
x-1

设g(x)=2x2-4x+2-a.
(1)当a<0时,有△<0,此时g(x)>0,所以f'(x)>0,f(x)在[e+1,e2+1]上单调递增.
所以f(x)min=f(e+1)=e2-a
(2)当a>0时,△=16-4×2(2-a)=8a>0.
令f'(x)>0,即2x2-4x+2-a>0,解得x>1+
2a
2
x<1-
2a
2
(舍);
令f'(x)<0,即2x2-4x+2-a<0,解得1-
2a
2
<x<1+
2a
2

①若1+
2a
2
e2+1
,即a≥2e4时,f(x)在区间[e+1,e2+1]单调递减,
所以f(x)min=f(e2+1)=e4-2a.
②若1+e<1+
2a
2
e2+1
,即2e2<a<2e4时,f(x)在区间[1+e,1+
2a
2
]
上单调递减,
在区间[1+
2a
2
,1+e2]
上单调递增,所以f(x)min=f(1+
2a
2
)=
a
2
-aln
2a
2

③若1+
2a
2
≤e+1
,即0<a≤2e2时,f(x)在区间[e+1,e2+1]单调递增,
所以f(x)min=f(e+1)=e2-a.
综上所述,当a<0或0<a≤2e2时,f(x)min=f(e+1)=e2-a;
当2e2<a<2e4时,f(x)min=
a
2
-aln
2a
2

当a≥2e4时,f(x)min=e4-2a.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网