题目内容
如图,正方形ABCD所在平面与平面四边形ABEF所在的平面互相垂直,ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°。
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(3)求二面角F-BD-A的余弦值。
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(3)求二面角F-BD-A的余弦值。
(1)证明:“略”;
(2)证明:“略”;
(3)解:二面角F-BD-A的余弦值
。
(2)证明:“略”;
(3)解:二面角F-BD-A的余弦值
练习册系列答案
相关题目