题目内容
已知数列{an}是等差数列,且a1=2,
an+1-
an=2(cos2
-sin2
)
(1)求数列{an}的通项公式;
(2)令bn=an•3n+n,求数列{bn}的前n项和Tn.
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
(1)求数列{an}的通项公式;
(2)令bn=an•3n+n,求数列{bn}的前n项和Tn.
(1)∵a1=2,
an+1-
an=2(cos2
-sin2
)=2cos
π=1
∴an+1-an=2
∴数列{an}是以2为首项,以2为公差的等差 数列
∴an=2+2(n-1)=2n
(2)∵bn=an•3n+n=2n•3n+n
∴Tn=2(1•3+2•32+…+n•3n)+(1+2+…+n)
∴3Tn=2( 1•32+2•33+…+n•3n+1)+3(1+2+…+n)
两式相减可得,-2Tn=2(3+32+33+…+3n-n•3n+1)-2•
=2•
-n(n+1)
=3n+1-3-n(n+1)
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 3 |
∴an+1-an=2
∴数列{an}是以2为首项,以2为公差的等差 数列
∴an=2+2(n-1)=2n
(2)∵bn=an•3n+n=2n•3n+n
∴Tn=2(1•3+2•32+…+n•3n)+(1+2+…+n)
∴3Tn=2( 1•32+2•33+…+n•3n+1)+3(1+2+…+n)
两式相减可得,-2Tn=2(3+32+33+…+3n-n•3n+1)-2•
| n(1+n) |
| 2 |
=2•
| 3(1-3n) |
| 1-3 |
=3n+1-3-n(n+1)
∴Tn=
| n(n+1)+3-3n+1 |
| 2 |
练习册系列答案
相关题目