题目内容
已知:二次函数f(x)=ax2+bx的图象过点(-4n,0),且f'(0)=2n(n∈N*).(1)求:f(x)的解析式;
(2)若数列{an}满足
| 1 |
| an+1 |
| 1 |
| an |
(3)对于(2)中的数列{an},求证:①
| n |
| k=1 |
| 4 |
| 3 |
| n |
| k=1 |
| akak+1 |
分析:(1)先求出其导函数,结合已知条件列出关于a,b的方程,求出a,b,即可得到f(x)的解析式;
(2)先根据
=f'(
)得到
-
=2n,再由叠加法即可求:数列{an}的通项公式;
(3)①根据ak=
<
=
-
,再代入
ak即可得到证明;
②先根据
=
=
-
可得左边成立;再对
的和进行放缩即可得到右边.
(2)先根据
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
(3)①根据ak=
| 1 | ||
k(k-1)+
|
| 1 |
| k(k-1) |
| 1 |
| k-1 |
| 1 |
| k |
| n |
| k=1 |
②先根据
| akak+1 |
| 1 | ||||
(k-
|
| 1 | ||
k-
|
| 1 | ||
k+
|
| n |
| k=1 |
| akak+1 |
解答:解:(1)由f′(x)=2ax+b,∴
解得
,即f(x)=
x2+2nx;
(2)∵
=
+2n,
∴
-
=2n,由叠加得
-
=n2-n,
∴an=
;
(3)①
ak=
<
=
-
(k≥2)
当n≥2时,
ak ≤4+[(1-
)+(
-
)+…+(
-
)]=5-
<5.
②∵
=
=
-
>0,
∴
≥
=
-
=
,
=(
-
)+(
-
)+…+(
-
)=2-
<2,
即
≤
<2.
|
|
| 1 |
| 2 |
(2)∵
| 1 |
| an+1 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| 4 |
∴an=
| 4 |
| (2n-1)2 |
(3)①
ak=
| 1 | ||
k(k-1)+
|
| 1 |
| k(k-1) |
| 1 |
| k-1 |
| 1 |
| k |
当n≥2时,
| n |
| k=1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
②∵
| akak+1 |
| 1 | ||||
(k-
|
| 1 | ||
k-
|
| 1 | ||
k+
|
∴
| n |
| k=1 |
| akak+1 |
| a1a2 |
| 1 | ||
1-
|
| 1 | ||
1+
|
| 4 |
| 3 |
| n |
| k=1 |
| akak+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
n-
|
| 1 | ||
n+
|
| 1 | ||
n+
|
即
| 4 |
| 3 |
| n |
| k=1 |
| akak+1 |
点评:本题主要考查数列和函数的综合以及不等式的证明.在证明不等式涉及到范围问题时,一般采用放缩法.
练习册系列答案
相关题目