题目内容
已知数列{an}是首项为a1=| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn;
(3)若Cn≤
| 1 |
| 4 |
分析:(1)根据等比数列的通项公式可求得an,代入bn+2=3log
an求得bn+1-bn为常数,进而判断出数列{bn}是等差数列.
(2)由(1)可分别求得an和bn,进而求得Cn进而用错位相减法进行求和.
(3)把(2)中的Cn,代入Cn+1-Cn结果小于0,进而判断出当n≥2时,Cn+1<Cn,进而可推断出当n=1时,Cn取最大值,问题转化为
m2+m-1≥
,求得m的取值范围.
| 1 |
| 4 |
(2)由(1)可分别求得an和bn,进而求得Cn进而用错位相减法进行求和.
(3)把(2)中的Cn,代入Cn+1-Cn结果小于0,进而判断出当n≥2时,Cn+1<Cn,进而可推断出当n=1时,Cn取最大值,问题转化为
| 1 |
| 4 |
| 1 |
| 4 |
解答:解:(1)由题意知,an=(
)n.
∵bn+2=3log
an,b1+2=3log
a1
∴b1=1
∴bn+1-bn=3log
an+1=3log
an=3log
=3log
q=3
∴数列{bn}是首项为1,公差为3的等差数列.
(2)由(1)知,an=(
)n.bn=3n-2
∴Cn=(3n-2)×(
)n.
∴Sn=1×
+4×(
)2+…+(3n-2)×(
)n,
于是
Sn=1×(
)2+4×(
)3+…(3n-2)×(
)n+1,
两式相减得
Sn=
+3×[(
)2+(
)3+…+(
)n)-(3n-2)×(
)n+1,
=
-(3n-2)×(
)n+1,
∴Sn=
-
×(
)n+1
(3)∵Cn+1-Cn=(3n+1)×(
)n+1-(3n-2)×(
)n=9(1-n)×(
)n+1,
∴当n=1时,C2=C1=
当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn
∴当n=1时,Cn取最大值是
又Cn≤
m2+m-1
∴
m2+m-1≥
即m2+4m-5≥0解得m≥1或m≤-5.
| 1 |
| 4 |
∵bn+2=3log
| 1 |
| 4 |
| 1 |
| 4 |
∴b1=1
∴bn+1-bn=3log
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| an+1 |
| a n |
| 1 |
| 4 |
∴数列{bn}是首项为1,公差为3的等差数列.
(2)由(1)知,an=(
| 1 |
| 4 |
∴Cn=(3n-2)×(
| 1 |
| 4 |
∴Sn=1×
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
于是
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
两式相减得
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
=
| 1 |
| 2 |
| 1 |
| 4 |
∴Sn=
| 2 |
| 3 |
| 12n+8 |
| 3 |
| 1 |
| 4 |
(3)∵Cn+1-Cn=(3n+1)×(
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∴当n=1时,C2=C1=
| 1 |
| 4 |
当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn
∴当n=1时,Cn取最大值是
| 1 |
| 4 |
又Cn≤
| 1 |
| 4 |
∴
| 1 |
| 4 |
| 1 |
| 4 |
即m2+4m-5≥0解得m≥1或m≤-5.
点评:本题主要考查了等差数列和等比数列的性质,裂项法求和,解不等式等问题.
练习册系列答案
相关题目