题目内容
设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有
f(x+y)=f(x)f(y)
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列{an}满足a1=f(0),且f(an+1)=
(n∈N*)
①求{an}通项公式.
②当a>1时,不等式
+
+…+
>
(loga+1x-logax+1)对不小于2的正整数恒成立,求x的取值范围.
f(x+y)=f(x)f(y)
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列{an}满足a1=f(0),且f(an+1)=
| 1 |
| f(-2-an) |
①求{an}通项公式.
②当a>1时,不等式
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| a2n |
| 12 |
| 35 |
(Ⅰ)x,y∈R,f(x+y)=f(x)•f(y),x<0时,f(x)>1
令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1
若x>0,则f(x-x)=f(0)=f(x)f(-x)
故f(x)=
| 1 |
| f(-x) |
故x∈Rf(x)>0
任取x1<x2f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1)
∵x2-x1>0∴0<f(x2-x1)<1
∴f(x2)<f(x1)
故f(x)在R上减函数
(Ⅱ)①a1=f(0)=1,f(an+1)=
| 1 |
| f(-2-an) |
由f(x)单调性知,an+1=an+2故{an}等差数列
∴an=2n-1
②bn=
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| a2n |
| 1 |
| an+2 |
| 1 |
| an+3 |
| 1 |
| a2n+2 |
| 1 |
| a2n+1 |
| 1 |
| a2n+2 |
| 1 |
| an+1 |
| 1 |
| 4n+1 |
| 1 |
| 4n+3 |
| 1 |
| 2n+1 |
=
| 1 |
| (4n+1)(4n+3)(2n+1) |
当n≥2时,(bn)min=b2=
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| 5 |
| 1 |
| 7 |
| 12 |
| 35 |
∴
| 12 |
| 35 |
| 12 |
| 35 |
即loga+1x-logax+1<1?loga+1x<logax
而a>1,
∴x>1
故x的取值范围:(1,+∞)
练习册系列答案
相关题目