题目内容
已知数列{an}满足a1+3a2+32a3+…+3n-1an=
,则an=______.
| n |
| 2 |
∵a1+3a2+32a3+…+3n-1an=
①
∴a1+3a2+32a3+…+3n-2an-1=
②
①-②得,3n-1an=
-
=
故an=
,
故答案为:
| n |
| 2 |
∴a1+3a2+32a3+…+3n-2an-1=
| n-1 |
| 2 |
①-②得,3n-1an=
| n |
| 2 |
| n-1 |
| 2 |
| 1 |
| 2 |
故an=
| 1 |
| 2•3n-1 |
故答案为:
| 1 |
| 2•3n-1 |
练习册系列答案
相关题目