题目内容

若tanα=,借助三角函数定义求角α的正弦函数值和余弦函数值.

活动:三角函数诱导公式至此已经学完,本例目的是让学生回顾任意角的三角函数定义,对于三角函数定义教材上是分两次完成的,切函数与弦函数分别进行,通过本例要让学生明确三角函数定义中点P的任意性;本例是一道基本概念题,可先让学生回忆任意角三角函数定义及正弦、余弦、正切在各个象限的符号,养成求值先看角所在象限的习惯;然后由学生自己独立完成,必要时教师给予点拨.

解:∵tanα=>0,∴α是第一象限或第三象限的角.

(1)如果α是第一象限的角,则由tanα=可知,角α终边上必有一点P(3,2).

所以x=3,y=2.

∵r=|OP|=,∴sinα=,cosα=.

(2)如果α是第三象限角,同理可得sinα==-,cosα==-.

点评:解完此题后教师可就此点拨学生,利用定义解题是非常重要的一种解题方法,而且对于本章来说,认识周期现象、将角推广及引入弧度制后就学习三角函数的定义,以后的其他内容都是在任意角三角函数定义的基础上展开的,所以说三角函数的定义在三角函数内容中显得尤为重要,要让学生熟练掌握利用定义解题的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网