题目内容

5.(1)设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求a的值,并求出A∪B.
(2)已知集合A={x|-3≤x≤5},B={x|m-2≤x≤m+1},满足B⊆A,求实数m的取值范围.

分析 (1)A,B,以及两集合的交集,得到9属于A,根据A中的元素列出关于a的方程,求出方程的解得到a的值,进而求出A与B的并集即可;
(2)由A,B,以及B为A的子集,确定出m的范围即可.

解答 解 (1)∵A={-4,2a-1,a2},B={a-5,1-a,9},A∩B={9},
∴9∈A,
∴a2=9或2a-1=9,
解得:a=±3或a=5,
当a=3时,A={9,5,-4},B={-2,-2,9},B中元素违背了互异性,舍去;
当a=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,
此时A∪B={-7,-4,-8,4,9};
当a=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},
与A∩B={9}矛盾,故舍去,
综上所述,a=-3,A∪B={-7,-4,-8,4,9};
(2)∵A={x|-3≤x≤5},B={x|m-2≤x≤m+1},且B⊆A
∴B≠∅,要满足B⊆A,须有$\left\{\begin{array}{l}-3≤m-2\\ m+1≤5\end{array}\right.$,
解得:-1≤m≤4.

点评 此题考查了并集及其运算,集合的包含关系判断及其应用,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网