题目内容
(2012•自贡一模)已知函数f(x)定义域为[O,1],且同时满足:
①对于任意x∈[0,1],总有f(x)≥3;
②f(1)=4;
③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列{an}的前n项和为Sn,满足a1=1,Sn=-
(an-3),n∈N+.求证:f(a1)+f(a2)+…+f(an)<3n+
.
①对于任意x∈[0,1],总有f(x)≥3;
②f(1)=4;
③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列{an}的前n项和为Sn,满足a1=1,Sn=-
| 1 |
| 2 |
| 3 |
| 2 |
分析:(I)利用赋值法,令x1=x2=0,结合f(x)≥3对一切x∈[0,1]恒成立,我们可以求出f(0);
(Ⅱ)先证明f(x)在[0,1]上递增,利用f(1)=4,即可求得f(x)的最大值为;
(Ⅲ)先求数列{an}的通项,再证明f(an)≤3+
,利用叠加,即可证得结论.
(Ⅱ)先证明f(x)在[0,1]上递增,利用f(1)=4,即可求得f(x)的最大值为;
(Ⅲ)先求数列{an}的通项,再证明f(an)≤3+
| 1 |
| 3n-1 |
解答:(Ⅰ)解:令x1=x2=0,则有f(0)≥2f(0)-3,即f(0)≤3
又对任意任意x∈[0,1],总有f(x)≥3,∴f(0)=3 (3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2,则
f(x2)=f[x1+(x2-x1)]≥f(x1)+f(x2-x1)-3
∵0<x2-x1≤1,∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3
∴f(x2)≥f(x1),即f(x)在[0,1]上递增.
∴当x∈[0,1]时,f(x)≤f(1)=4,∴f(x)的最大值为4 (6分)
(Ⅲ)证明:当n>1时,an=Sn-Sn-1=-
(an-3)+
(an-1-3),
∴
=
(7分)
∴数列{an}是以1为首项,公比为
的等比数列,
∴an=
(8分)
∵f(1)=f[3n-1×
]=f[
+(3n-1-1)×
]≥f(
)+f[(3n-1-1)×
]-3
即 4≥3n-1f(
)-3n+3 (10分)
∴f(
)≤
=3+
,
即f(an)≤3+
,(11分)
∴f(a1)+f(a2)+…+f(an)≤(3+
)+…+(3+
)=3n+
-
<3n+
.
∴原不等式成立 (14分)
又对任意任意x∈[0,1],总有f(x)≥3,∴f(0)=3 (3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2,则
f(x2)=f[x1+(x2-x1)]≥f(x1)+f(x2-x1)-3
∵0<x2-x1≤1,∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3
∴f(x2)≥f(x1),即f(x)在[0,1]上递增.
∴当x∈[0,1]时,f(x)≤f(1)=4,∴f(x)的最大值为4 (6分)
(Ⅲ)证明:当n>1时,an=Sn-Sn-1=-
| 1 |
| 2 |
| 1 |
| 2 |
∴
| an |
| an-1 |
| 1 |
| 3 |
∴数列{an}是以1为首项,公比为
| 1 |
| 3 |
∴an=
| 1 |
| 3n-1 |
∵f(1)=f[3n-1×
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
即 4≥3n-1f(
| 1 |
| 3n-1 |
∴f(
| 1 |
| 3n-1 |
| 3n+1 |
| 3n-1 |
| 1 |
| 3n-1 |
即f(an)≤3+
| 1 |
| 3n-1 |
∴f(a1)+f(a2)+…+f(an)≤(3+
| 1 |
| 30 |
| 1 |
| 3n-1 |
| 3 |
| 2 |
| 1 |
| 2×3n-1 |
| 3 |
| 2 |
∴原不等式成立 (14分)
点评:本题考查抽象函数,考查函数的单调性,考查函数的最值,考查数列与函数的关系,考查不等式的证明,综合性强.
练习册系列答案
相关题目