题目内容
已知数列{an}满足a1=1, a2=
, an-1an+anan+1=2an-1an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn=1-
,试求数列{
}的前n项和Tn;
(Ⅲ)记数列{1-
}的前n项积为∏limit
(1-
),试证明:
<∏limit
(1-
)<1.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn=1-
| 1 |
| 2n |
| bn |
| an |
(Ⅲ)记数列{1-
| a | 2n |
| s | ni=2 |
| a | 2i |
| 1 |
| 2 |
| s | ni=2 |
| a | 2i |
(Ⅰ)由an-1an+anan+1=2an-1an+1?an(an-1+an+1)=2an-1an+1?
=
?
+
=
?
-
=
-
.
而a1=1且
-
=2-1=1,
因此{
}是首项为1,公差为1的等差数列.
从而
=1+1×(n-1)=n?an=
.
(Ⅱ)当n=1时,b1=S1=1-
=
.
当n≥2时,bn=Sn-Sn-1=(1-
)-(1-
)=
.
而b1也符合上式,故bn=
,从而:
=
.
所以Tn=
+
+
+…+
?
Tn=
+
+
+…+
.
将上面两式相减,可得:
Tn=
+
+
+…+
-
=
-
=1-
-
?Tn=2-
.
(Ⅲ)因为1-
=1-(
)2=(1+
)(1-
)=
•
.
故∏limit
(1-
)=(
•
)•(
•
)•(
•
)•…•(
•
)=(
•
•
•…•
)•(
•
•
•…•
)
•
=
(1+
).
由于n≥2,n∈N*,故0<
≤
,从而
<
(1+
)≤
<1,即
<∏limit
(1-
)<1.
| an-1+an+1 |
| an-1an+1 |
| 2 |
| an |
?
| 1 |
| an+1 |
| 1 |
| an-1 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an-1 |
而a1=1且
| 1 |
| a2 |
| 1 |
| a1 |
因此{
| 1 |
| an |
从而
| 1 |
| an |
| 1 |
| n |
(Ⅱ)当n=1时,b1=S1=1-
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,bn=Sn-Sn-1=(1-
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 2n |
而b1也符合上式,故bn=
| 1 |
| 2n |
| bn |
| an |
| n |
| 2n |
所以Tn=
| 1 |
| 21 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| 3 |
| 24 |
| n |
| 2n+1 |
将上面两式相减,可得:
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
| ||||
1-
|
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
| n+2 |
| 2n |
(Ⅲ)因为1-
| a | 2n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
| n-1 |
| n |
故∏limit
| s | ni=2 |
| a | 2i |
| 3 |
| 2 |
| 1 |
| 2 |
| 4 |
| 3 |
| 2 |
| 3 |
| 5 |
| 4 |
| 3 |
| 4 |
| n+1 |
| n |
| n-1 |
| n |
| 3 |
| 2 |
| 4 |
| 3 |
| 5 |
| 4 |
| n+1 |
| n |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| n-1 |
| n |
| n+1 |
| 2 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
由于n≥2,n∈N*,故0<
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 3 |
| 4 |
| 1 |
| 2 |
| s | ni=2 |
| a | 2i |
练习册系列答案
相关题目