题目内容
已知α为第二象限的角,cos
+sin
=-
,求下列各式的值:
(1)sinα;
(2)sin(α+
);
(3)cos
-sin
.
| α |
| 2 |
| α |
| 2 |
| ||
| 2 |
(1)sinα;
(2)sin(α+
| π |
| 6 |
(3)cos
| α |
| 2 |
| α |
| 2 |
分析:(1)将已经式平方展开,再结合同角三角函数的平方关系和二倍角的正弦公式,即可得到sinα的值;
(2)用同角三角函数基本关系求出cosα的值,再用两角和的正弦公式,即可求出sin(α+
)的值;
(3)根据同角三角函数关系的平方关系,可以算出(cos
-sin
)2的值,再由α为第二象限的角,即可得到cos
-sin
为正数,得到所求的值.
(2)用同角三角函数基本关系求出cosα的值,再用两角和的正弦公式,即可求出sin(α+
| π |
| 6 |
(3)根据同角三角函数关系的平方关系,可以算出(cos
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
解答:解:(1)将已知式平方,得
cos2
+2sin
cos
+sin2
=
,即1+sinα=
,因此sinα=
.…(4分)
(2)∵α为第二象限角,得
cosα=-
=-
,
所以sin(α+
)=sinαcos
+cosαsin
=
×
-
×
=
.…(8分)
(3)∵(cos
-sin
)2+(cos
+sin
)2=2,cos
+sin
=-
∴(cos
-sin
)2=2-
=
又∵α为第二象限角,cosα=cos2
-sin2
=(cos
-sin
)(cos
+sin
)<0
∴cos
-sin
=
.(舍负)…(12分)
cos2
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| 7 |
| 4 |
| 7 |
| 4 |
| 3 |
| 4 |
(2)∵α为第二象限角,得
cosα=-
| 1-sin2α |
| ||
| 4 |
所以sin(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 4 |
| ||
| 2 |
| ||
| 4 |
| 1 |
| 2 |
3
| ||||
| 8 |
(3)∵(cos
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| ||
| 2 |
∴(cos
| α |
| 2 |
| α |
| 2 |
| 7 |
| 4 |
| 1 |
| 4 |
又∵α为第二象限角,cosα=cos2
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
| α |
| 2 |
∴cos
| α |
| 2 |
| α |
| 2 |
| 1 |
| 2 |
点评:本题考查了同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式等三角函数化简求值的知识,属于基础题.
练习册系列答案
相关题目