题目内容
已知数列{an}的前n项和为Sn,a1=1,an+1=
Sn(n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.
| 1 | 3 |
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.
分析:(1)根据an+1=
Sn,分别令n=1,2,3即可求得a2,a3,a4的值;
(2)由an+1=
Sn,得an=
Sn-1(n≥2),两式相减可得数列递推式,由递推式可判断{an}从第2项起,以后各项成等比数列,从而得通项公式;
| 1 |
| 3 |
(2)由an+1=
| 1 |
| 3 |
| 1 |
| 3 |
解答:解:(1)∵an+1=
Sn,
∴a2=
S1=
a1=
,
∴a3=
S2=
(a1+a2)=
(1+
)=
,
∴a4=
S3=
(a1+a2+a3)=
(1+
+
)=
;
(2)∵an+1=
Sn,∴an=
Sn-1(n≥2),
两式相减得:an+1-an=
(Sn-Sn-1)=
an,
∴an+1=
an(n≥2),
∴数列{an}从第2项起,以后各项成等比数列,an=
×(
)n-2(n≥2),
故数列{an}的通项公式为an=
.
| 1 |
| 3 |
∴a2=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴a3=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 9 |
∴a4=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 9 |
| 16 |
| 27 |
(2)∵an+1=
| 1 |
| 3 |
| 1 |
| 3 |
两式相减得:an+1-an=
| 1 |
| 3 |
| 1 |
| 3 |
∴an+1=
| 4 |
| 3 |
∴数列{an}从第2项起,以后各项成等比数列,an=
| 1 |
| 3 |
| 4 |
| 3 |
故数列{an}的通项公式为an=
|
点评:本题考查由数列递推公式求数列通项公式,解决(2)问关键是明确关系式:an=
.
|
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |