题目内容
已知数列{an}的通项公式an=
,则前n项和Sn=______.
| 1 |
| n(n+1) |
∵数列{an}的通项公式an=
,
∴前n项和Sn=a1+a2+…+an
=
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
| 1 |
| n(n+1) |
∴前n项和Sn=a1+a2+…+an
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
故答案为:
| n |
| n+1 |
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|