题目内容

数列{an}满足,它的前n项和为Sn,则满足Sn>2013的最小n值是( )
A.9
B.10
C.11
D.12
【答案】分析:利用数列递推式,确定数列{an}是以1为首项,2为公比的等比数列,再求和,即可得到结论.
解答:解:∵log2an+1=log2an+1,∴log2an+1-log2an=1
=2
∵a1=1
∴数列{an}是以1为首项,2为公比的等比数列
∴Sn==2n-1
∵Sn>2013,令2n-1>2013,解得n≥12
故选D.
点评:本题主要考查数列递推式及前n项和的计算,确定数列是等比数列是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网