题目内容
已知数列{an}满足:a1=2,且an+1=2-
,n∈N*.
(1)设bn=
,求证:{bn}是等差数列;
(2)求数列{an}的通项公式;
(3)设cn=an+
,求证:2n<c1+c2+…+cn<2n+1,n∈N*.
| 1 |
| an |
(1)设bn=
| 1 |
| an-1 |
(2)求数列{an}的通项公式;
(3)设cn=an+
| 1 |
| an |
分析:(1)由a1=2,且an+1=2-
,n∈N*,知an=
.由bn=
,知bn+1-bn=
-
=
-
=1,故数列{bn}是等差数列.
(2))a1=2,且an+1=2-
,n∈N*.知a2=2-
=
,a3=2-
=
,a4=1-
=
,…猜想an=
.用数学归纳法进行证明,得到an=
.
(3)由cn=an+
,an=
,知cn=
+
= 2+
-
,故c1+c2+…+cn=2n+(1-
)+(
-
)+…+(
-
)=2n+1-
2n+
,由此知2n<c1+c2+…+cn<2n+1,n∈N*.
| 1 |
| an |
| n+1 |
| n |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 | ||
1-
|
| 1 | ||
1-
|
(2))a1=2,且an+1=2-
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| n+1 |
| n |
| n+1 |
| n |
(3)由cn=an+
| 1 |
| an |
| n+1 |
| n |
| n+1 |
| n |
| n |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
解答:解:(1)∵a1=2,且an+1=2-
,n∈N*.
∴a2=2-
=
,
a3=2-
=
,
a4=1-
=
,
…
猜想an=
.
用数学归纳法进行证明:
①a1=
=2,成立.
②假设n=k时,成立,即ak=
,
则当n=k+1时,ak+1=2-
=2-
=
,成立.
由①②知,an=
.
∵bn=
,
∴bn+1-bn=
-
=
-
=
-
=(n+1)-n=1,
∴数列{bn}是等差数列.
(2))∵a1=2,且an+1=2-
,n∈N*.
∴a2=2-
=
,
a3=2-
=
,
a4=1-
=
,
…
猜想an=
.
用数学归纳法进行证明:
①a1=
=2,成立.
②假设n=k时,成立,即ak=
,
则当n=k+1时,ak+1=2-
=2-
=
,成立.
由①②知,an=
.
(3)∵cn=an+
,an=
,
∴cn=
+
= 2+
-
,
∴c1+c2+…+cn=2n+(1-
)+(
-
)+…+(
-
)
=2n+1-
<2n+1.
∵c1+c2+…+cn=2n+(1-
)+(
-
)+…+(
-
)
=2n+1-
=2n+
>2n.
∴2n<c1+c2+…+cn<2n+1,n∈N*.
| 1 |
| an |
∴a2=2-
| 1 |
| 2 |
| 3 |
| 2 |
a3=2-
| 2 |
| 3 |
| 4 |
| 3 |
a4=1-
| 3 |
| 4 |
| 5 |
| 4 |
…
猜想an=
| n+1 |
| n |
用数学归纳法进行证明:
①a1=
| 2 |
| 1 |
②假设n=k时,成立,即ak=
| k+1 |
| k |
则当n=k+1时,ak+1=2-
| 1 |
| ak |
| k |
| k+1 |
| k+2 |
| k+1 |
由①②知,an=
| n+1 |
| n |
∵bn=
| 1 |
| an-1 |
∴bn+1-bn=
| 1 |
| an+1-1 |
| 1 |
| an-1 |
=
| 1 | ||
1-
|
| 1 | ||
1-
|
=
| 1 | ||
1-
|
| 1 | ||
1-
|
=(n+1)-n=1,
∴数列{bn}是等差数列.
(2))∵a1=2,且an+1=2-
| 1 |
| an |
∴a2=2-
| 1 |
| 2 |
| 3 |
| 2 |
a3=2-
| 2 |
| 3 |
| 4 |
| 3 |
a4=1-
| 3 |
| 4 |
| 5 |
| 4 |
…
猜想an=
| n+1 |
| n |
用数学归纳法进行证明:
①a1=
| 2 |
| 1 |
②假设n=k时,成立,即ak=
| k+1 |
| k |
则当n=k+1时,ak+1=2-
| 1 |
| ak |
| k |
| k+1 |
| k+2 |
| k+1 |
由①②知,an=
| n+1 |
| n |
(3)∵cn=an+
| 1 |
| an |
| n+1 |
| n |
∴cn=
| n+1 |
| n |
| n |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
∴c1+c2+…+cn=2n+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2n+1-
| 1 |
| n+1 |
∵c1+c2+…+cn=2n+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2n+1-
| 1 |
| n+1 |
| n |
| n+1 |
∴2n<c1+c2+…+cn<2n+1,n∈N*.
点评:本题考查等差数列的证明,通项公式的求法和前n项和的证明,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目