题目内容
函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记Sn=f(
),令bn=anSn,数列{bn}的前n项和为Tn
(1)求{an}的通项公式和Sn
(2)求证Tn<
.
| 3 | an+1 |
(1)求{an}的通项公式和Sn
(2)求证Tn<
| 1 |
| 3 |
分析:(1)设数列{an}的公差为d,利用a3=7,a1+a2+a3=12,建立方程,从而可求数列的首项与公差,进而可得数列的通项,利用f(x)=x3,可得Sn;
(2)求出数列{bn}的通项,利用裂项法求和,即可证得结论.
(2)求出数列{bn}的通项,利用裂项法求和,即可证得结论.
解答:(1)解:设数列{an}的公差为d,
∵a3=7,a1+a2+a3=12,
∴a1+2d=7,3a1+3d=12
解得a1=1,d=3,∴an=3n-2
∵f(x)=x3
∴Sn=f(
)=an+1=3n+1 (6分)
(2)证明:∵bn=anSn=(3n-2)(3n+1)
∴
=
=
(
-
)Tn=
+
+…+
=
(1-
+
-
+…+
-
)
∴Tn=
(1-
)<
(12分)
∵a3=7,a1+a2+a3=12,
∴a1+2d=7,3a1+3d=12
解得a1=1,d=3,∴an=3n-2
∵f(x)=x3
∴Sn=f(
| 3 | an+1 |
(2)证明:∵bn=anSn=(3n-2)(3n+1)
∴
| 1 |
| bn |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
点评:本题考查数列的通项与求和,考查基本量法的运用,考查裂项法求和,属于中档题.
练习册系列答案
相关题目