搜索
题目内容
当n为正整数时,定义函数N(n)表示n的最大奇因数。如N(3)=3,N(10)=5,…。记S(n)=N(1)+N(2)+N(3)+…N(2
n
),则S(n)=( )。
试题答案
相关练习册答案
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+N(3)+…+N(2
n
).则(1)S(4)=
86
86
.(2)S(n)=
4
n
+2
3
.
当n为正整数时,定义函数N(n)表示n的最大奇因数,如:N(3)=3,N(10)=5,记S(n)=N(1)+N(2)+N(3)+…+N(2
n
),则
(1)S(3)=
22
22
.
(2)S(n)=
4
n
+2
3
4
n
+2
3
.
定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x
1
,x
2
∈R
+
,根据所画下凸函数f(x)=xlnx图象特征指出x
1
lnx
1
+x
2
lnx
2
≥(x
1
+x
2
)[ln(x
1
+x
2
)-ln2]与x
1
lnx
1
+x
2
lnx
2
≥(x
1
+x
2
)[ln(x
1
+x
2
)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2
n
),若
2
n
i=1
x
i
=1
,证明:
2
n
i=1
x
i
ln
x
i
≥-ln
2
n
ln
1
3S(n)-2
(i,n∈N
*
).
当n为正整数时,定义函数N(n)表示n的最大奇因数,如:N(3)=3,N(10)=5,记S(n)=N(1)+N(2)+N(3)+…+N(2
n
),则
(1)S(3)=
.
(2)S(n)=
.
当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+N(3)+…+N(2
n
).则(1)S(4)=
.(2)S(n)=
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案