题目内容
12.焦点在x轴上,焦距为10,且与双曲线x2-$\frac{{y}^{2}}{4}$=1有相同渐近线的双曲线的标准方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.分析 设所求双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),由题意可得2c=10,即c=5,求出已知双曲线的渐近线方程,可得a,b的方程组,解得a,b,即可得到所求双曲线的标准方程.
解答 解:设所求双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
由题意可得2c=10,即c=5,
由双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线方程为y=±2x,
可得$\frac{b}{a}$=2,又a2+b2=25,
解得a=$\sqrt{5}$,b=2$\sqrt{5}$,
即有双曲线的方程为$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
故答案为:$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
点评 本题考查双曲线的方程的求法,注意运用渐近线方程和a,b,c的关系,考查运算能力,属于基础题.
练习册系列答案
相关题目
4.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{5}$,则该双曲线的渐近线方程为( )
| A. | y=±2x | B. | $y=±\frac{1}{2}x$ | C. | $y=±\frac{1}{4}x$ | D. | y=±4x |
1.已知抛物线M:y2=12x的焦点F到双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)渐近线的距离为$\frac{3\sqrt{10}}{4}$,点P是抛物线M上的一动点,且P到双曲线C的焦点F1(0,c)的距离与到直线x=-3的距离之和的最小值为5,则双曲线C的方程为( )
| A. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1 | B. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1 | C. | $\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1 | D. | $\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1 |