题目内容
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.| 第一列 | 第二列 | 第三列 | |
| 第一行 | 3 | 2 | 10 |
| 第二行 | 6 | 4 | 14 |
| 第三行 | 9 | 8 | 18 |
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.
分析:本题考查的是数列求和问题.在解答时:
(Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{an}的通项公式;
(Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{bn}的通项进行化简,然后结合通项的特点,利用分组法进行数列{bn}的前2n项和的求解.
(Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{an}的通项公式;
(Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{bn}的通项进行化简,然后结合通项的特点,利用分组法进行数列{bn}的前2n项和的求解.
解答:解:(Ⅰ)当a1=3时,不符合题意;
当a1=2时,当且仅当a2=6,a3=18时符合题意;
当a1=10时,不符合题意;
所以a1=2,a2=6,a3=18,
∴公比为q=3,
故:an=2•3n-1,n∈N*.
(Ⅱ)∵bn=an+(-1)nlnan
=2•3n-1+(-1)nln(2•3n-1)
=2•3n-1+(-1)n[ln2+(n-1)ln3]
=2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3
∴S2n=b1+b2+…+b2n
=2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n]•(ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3
=2×
+nln3
=32n+nln3-1
∴数列{bn}的前2n项和S2n=32n+nln3-1.
当a1=2时,当且仅当a2=6,a3=18时符合题意;
当a1=10时,不符合题意;
所以a1=2,a2=6,a3=18,
∴公比为q=3,
故:an=2•3n-1,n∈N*.
(Ⅱ)∵bn=an+(-1)nlnan
=2•3n-1+(-1)nln(2•3n-1)
=2•3n-1+(-1)n[ln2+(n-1)ln3]
=2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3
∴S2n=b1+b2+…+b2n
=2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n]•(ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3
=2×
| 1-32n |
| 1-3 |
=32n+nln3-1
∴数列{bn}的前2n项和S2n=32n+nln3-1.
点评:本题考查的是数列求和问题.在解答的过程当中充分体现了分类讨论的思想、分组求和的方法、等比数列通项的求法以及运算能力.值得同学们体会和反思.
练习册系列答案
相关题目