题目内容
数列{an}的前n项和Sn满足:Sn=2an-3n(n∈N*).
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)令bn=
,数列{bn} 的前n项和为Tn,求证:Tn<
.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)令bn=
| 3 |
| Sn+3n+9 |
| 1 |
| 2 |
分析:(1)由递推公式an=sn-sn-1(n≥2),a1=s1求解.
(2)由Sn=2(3•2n-3)-3n=3•2n+1-3n-6,知Sn+3n+9=3(2n+1+1),所以bn=
<
,再由放缩法证明Tn<
.
(2)由Sn=2(3•2n-3)-3n=3•2n+1-3n-6,知Sn+3n+9=3(2n+1+1),所以bn=
| 1 |
| 2n+1+1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
解答:解:(1)a1=S1=2a1-3,
∴a1=3,an+3=(a1+3)•2n-1,
∴an=3.2n-3(n∈N*).
(2)Sn=2(3•2n-3)-3n=3•2n+1-3n-6,
∴Sn+3n+9=3(2n+1+1),
∴bn=
<
,
Tn=
+
+…+
=
=
-
<
.
∴a1=3,an+3=(a1+3)•2n-1,
∴an=3.2n-3(n∈N*).
(2)Sn=2(3•2n-3)-3n=3•2n+1-3n-6,
∴Sn+3n+9=3(2n+1+1),
∴bn=
| 1 |
| 2n+1+1 |
| 1 |
| 2n+1 |
Tn=
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
=
| ||||
1-
|
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,合理地运用放缩法进行证明.注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目