题目内容

在正方体ABCD-A1B1C1D1中,E、F分别是棱CC1与D1C1的中点,则直线EF与A1C1所成角正弦值是(  )精英家教网
A、1
B、
6
+
2
4
C、
3
2
D、
2
2
分析:由于直线EF与A1C1不在同一平面内,要把两条异面直线移到同一平面内,连接A1B,D1C,A1B∥D1C,EF∥D1C,则EF∥A1B,则直线EF与A1C1所成角与A1B与A1C1所成角相等.
解答:解:连接A1B、D1C、A1B,由于A1B∥D1C,EF∥D1C,则EF∥A1B,
则直线EF与A1C1所成角与A1B与A1C1所成角相等.
因为A1B=D1C=A1B,则A1B与A1C1所成的角为60°,
因此,直线EF与A1C1所成角为60°则COS60°=
3
2

故直线EF与A1C1所成角正弦值是
3
2

故选C.
点评:此题主要考查异面直线的角度及余弦值计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网