题目内容
已知
=(1,1),
=(x,1),
=
+2
,v=2
-
.
(1)若
=3
,求x;
(2)若
∥
,并说明此时两向量方向相同还是相反.
| a |
| b |
| n |
| a |
| b |
| a |
| b |
(1)若
| n |
| v |
(2)若
| n |
| v |
∵
=(1,1),
=(x,1),
∴
=
+2
=(1,1)+(2x,2)=(2x+1,3),
=2
-
=(2,2)-(x,1)=(2-x,1).
(1)∵
=3
,
∴(2x+1,3)=3(2-x,1),
解得x=1.
(2)∵
∥
,
∴2x+1=3 (2-x),∴x=1.
此时,
=(3,3),
=(1,1),
∵
=3
,
∴n与v方向相同.
| a |
| b |
∴
| n |
| a |
| b |
| v |
| a |
| b |
(1)∵
| n |
| v |
∴(2x+1,3)=3(2-x,1),
解得x=1.
(2)∵
| n |
| v |
∴2x+1=3 (2-x),∴x=1.
此时,
| n |
| v |
∵
| n |
| v |
∴n与v方向相同.
练习册系列答案
相关题目