ÌâÄ¿ÄÚÈÝ
18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=tsin\frac{¦Ð}{3}}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ù0£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬ÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-6¦Ñcos¦È+8=0£®£¨1£©ÇóÇúÏßC1ÓëC2½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©
£¨2£©ÈôµãPÊÇÇúÏßC3ÉÏÒ»¶¯µã£¬ÇóµãPµ½ÇúÏßC1µÄ×î¶Ì¾àÀ룮
·ÖÎö £¨1£©Ö±½Ó¸ù¾Ý²ÎÊý·½³ÌºÍÆÕͨ·½³Ì»¥»¯¹«Ê½½øÐд¦Àí¡¢¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¹«Ê½½øÐл¯¼ò¼´¿É£»
£¨2£©Ê×ÏÈ£¬Çó½âÔ²Ðĵ½Ö±ÏߵľàÀ룬Ȼºó£¬¸Ã¾àÀëÈ¥µô°ë¾¶¼´ÎªËùÇó£®
½â´ð ½â£º¸ù¾ÝÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{3}}\\{y=tsin\frac{¦Ð}{3}}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ù0£©£¬
µÃy=$\sqrt{3}x$£¬
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬
¡àx2+y2=2y£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=\sqrt{3}x}\\{{x}^{2}+{y}^{2}=2y}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{3}{2}}\end{array}\right.$£¬
ËüÃÇͼÏóµÄ½»µãΪ£º£¨0£¬0£©£¬£¨$\frac{\sqrt{3}}{2}$£¬$\frac{3}{2}$£©£¬
¶ÔÓ¦µÄ¼«×ø±êΪ£¨0£¬0£©£¬£¨$\sqrt{3}$£¬$\frac{¦Ð}{3}$£©£¬
£¨2£©ÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-6¦Ñcos¦È+8=0£¬
¶ÔÓ¦µÄÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2-6x+8=0£¬
¡à£¨x-3£©2+y2=1£¬
¹ÊÔ²ÐÄΪ£¨3£¬0£©£¬°ë¾¶Îªr=1£¬
Ô²ÐÄ£¨3£¬0£©µ½Ö±Ïßy=$\sqrt{3}$xµÄ¾àÀëΪd=$\frac{3\sqrt{3}}{2}$£¬
¡àµãPµ½ÇúÏßC1µÄ×î¶Ì¾àÀë$\frac{3\sqrt{3}}{2}-1$£®
µãÆÀ ±¾ÌâÖØµã¿¼²éÁ˼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯¡¢²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¹«Ê½µÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮