ÌâÄ¿ÄÚÈÝ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬0£¼¦Á£¼$\frac{¦Ð}{2}$£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È+2cos¦È=¦Ñ£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©£¬Ö±ÏßlÓëÇúÏßC½»¸ÉA£¬BÁ½µã
£¨1£©ÇóÖ¤£ºOA¡ÍOB£»
£¨2£©Èô¦Á=$\frac{¦Ð}{4}$£¬ÇóÖ±ÏßÓëlƽÐеÄÇúÏßCµÄÇÐÏß·½³Ì£®

·ÖÎö £¨1£©°Ñ²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Ö¤Ã÷x1x2+y1y2=0£¬¼´¿ÉÖ¤Ã÷OA¡ÍOB£»
£¨2£©Èô¦Á=$\frac{¦Ð}{4}$£¬ÉèÖ±Ïß·½³ÌΪy=x+b£¬Óëy2=2xÁªÁ¢£¬¿ÉµÃx2+£¨2b-2£©x+b2=0£¬¡÷=£¨2b-2£©2-4b2=0£¬Çó³öb£¬¼´¿ÉÇóÖ±ÏßÓëlƽÐеÄÇúÏßCµÄÇÐÏß·½³Ì£®

½â´ð £¨1£©Ö¤Ã÷£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬0£¼¦Á£¼$\frac{¦Ð}{2}$£©£¬ÆÕͨ·½³ÌΪy=tan¦Á£¨x-2£©£¬
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È+2cos¦È=¦ÑµÄÖ±½Ç×ø±ê·½³ÌΪy2=2x£¬
ÁªÁ¢¿ÉµÃtan2¦Áx-£¨4tan2¦Á+2£©x+4tan2¦Á=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¡àx1+x2=4+$\frac{2}{ta{n}^{2}¦Á}$£¬x1x2=4£¬
¡ày1y2=-4£¬
¡àx1x2+y1y2=0£¬
¡àOA¡ÍOB£»
£¨2£©½â£º¦Á=$\frac{¦Ð}{4}$£¬ÉèÖ±Ïß·½³ÌΪy=x+b£¬
Óëy2=2xÁªÁ¢£¬¿ÉµÃx2+£¨2b-2£©x+b2=0£¬
¡à¡÷=£¨2b-2£©2-4b2=0£¬
¡àb=$\frac{1}{2}$£¬
¡àÖ±ÏßÓëlƽÐеÄÇúÏßCµÄÇÐÏß·½³ÌΪy=x+$\frac{1}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø