题目内容
20.已知函数f(x)=lnx+$\frac{k}{x}$,k∈R,若f(x)≥2+$\frac{1-e}{x}$恒成立,则实数k的取值范围为( )| A. | k>1 | B. | k≥1 | C. | k>3 | D. | k≥3 |
分析 将不等式f(x)≥2+$\frac{1-e}{x}$恒成立进行转化,利用参数分离法求函数的最值,求实数k的取值范围.
解答 解:若f(x)≥2+$\frac{1-e}{x}$恒成立,
即lnx+$\frac{k}{x}$≥2+$\frac{1-e}{x}$,
则k≥2x+1-e-xlnx,
设g(x)=2x+1-e-xlnx,
则g′(x)=2-(1+lnx)=1-lnx,
当x>e,则g′(x)=1-lnx<0,此时函数单调递减,
当0<x<e,则g′(x)=1-lnx>0,此时函数单调递增,
即当x=e时,g(x)取得极大值,同时也是最大值g(e)=2e+1-e-e=1,
则k≥1,
即k的取值范围是k≥1.
故选:B.
点评 本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,利用参数分离法是解决本题的关键.
练习册系列答案
相关题目
8.若f′(x0)=2,则$\underset{lim}{k→0}$$\frac{f({x}_{0}+k)-f({x}_{0})}{2k}$=( )
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | 无法确定 |
15.在平面直角坐标系xOy中,已知圆C:x2+(y-3)2=2,点A是x轴上的一个动点,AP,AQ分别切圆C于P,Q两点,则线段PQ的取值范围是( )
| A. | [$\frac{\sqrt{14}}{3}$,$\sqrt{2}$) | B. | [$\frac{2\sqrt{14}}{3}$,2$\sqrt{2}$) | C. | [$\frac{\sqrt{14}}{3}$,$\sqrt{2}$] | D. | [$\frac{2\sqrt{14}}{3}$,2$\sqrt{2}$] |