题目内容
(2013•虹口区二模)设(1+2x)n展开式中二项式系数之和为an,各项系数之和为bn,则
=
| lim |
| n→∞ |
| an-bn |
| an+bn |
-1
-1
.分析:则由题意可得2n=an,bn =3n,
=
=
,再利用数列极限的运算法则求得结果.
| lim |
| n→∞ |
| an-bn |
| an+bn |
| lim |
| n→∞ |
| 2n-3n |
| 2n+3n |
| lim |
| n→∞ |
(
| ||
(
|
解答:解:∵(1+2x)n展开式中二项式系数之和为an,各项系数之和为bn,
则 2n=an,bn =3n,
∴
=
=
=
=-1,
故答案为-1.
则 2n=an,bn =3n,
∴
| lim |
| n→∞ |
| an-bn |
| an+bn |
| lim |
| n→∞ |
| 2n-3n |
| 2n+3n |
| lim |
| n→∞ |
(
| ||
(
|
| 0-1 |
| 0+1 |
故答案为-1.
点评:本题主要考查二项式系数系数和、二项式的系数和的区别,求数列的极限,数列极限的运算法则,属于中档题.
练习册系列答案
相关题目