题目内容
数列{an}中,a1=1,an+1=
(n∈N*).
(1)求通项an;
(2)令bn=
,求数列{bn}的前n项和Tn.
| an |
| an+1 |
(1)求通项an;
(2)令bn=
| 2n |
| an |
分析:(1)由递推式变形可得数列{
}为等差数列,分别取n=1,2,…,n后累加即可得到数列{an}的通项公式;
(2)把数列{an}的通项公式代入bn=
,利用错位相加法求数列{bn}的前n项和Tn.
| 1 |
| an |
(2)把数列{an}的通项公式代入bn=
| 2n |
| an |
解答:解:(1)由an+1=
(n∈N*),得
=
=
+1,
所以
-
=1.
所以
=1
-
=1
-
=1
…
-
=1.
累加得
=n.
∴an=
(n∈N*);
(2)由bn=
,
∴Tn=1×21+2×22+…+n×2n
2Tn=1×22+2×23+…+n×2n+1.
两式相减得:-Tn=2+(22+23+…+2n)-n×2n+1
=
-n×2n+1
=(1-n)×2n+1-2∴Tn=(n-1)×2n+1+2
| an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| an |
| 1 |
| an |
所以
| 1 |
| an+1 |
| 1 |
| an |
所以
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2 |
…
| 1 |
| an |
| 1 |
| an-1 |
累加得
| 1 |
| an |
∴an=
| 1 |
| n |
(2)由bn=
| 2n |
| an |
∴Tn=1×21+2×22+…+n×2n
2Tn=1×22+2×23+…+n×2n+1.
两式相减得:-Tn=2+(22+23+…+2n)-n×2n+1
=
| 2×(1-2n) |
| 1-2 |
=(1-n)×2n+1-2∴Tn=(n-1)×2n+1+2
点评:本题考查了等差关系的确定,考查了等差数列的通项公式,训练了利用错位相减法求数列的前n项和,是中档题.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|