题目内容

设F1,F2是双曲线x2-
y2
24
=1
的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于(  )
A、4
2
B、8
3
C、24
D、48
分析:先由双曲线的方程求出|F1F2|=10,再由3|PF1|=4|PF2|,求出|PF1|=8,|PF2|=6,由此能求出△PF1F2的面积.
解答:解:F1(-5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则|PF1| =
4
3
x

由双曲线的性质知
4
3
x-x=2
,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=
1
2
×8×6=24

故选C.
点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网