题目内容
将一枚骰子先后投掷2次,观察向上的点数,问
(1)2次点数之积为偶数的概率;
(2)第2次的点数比第1次大的概率;
(3)2次的点数正好是连续的2个整数的概率;
(4)若将2次得到的点数m,n作为点P的坐标,则P落在圆x2+y2=16内的概率.
(1)2次点数之积为偶数的概率;
(2)第2次的点数比第1次大的概率;
(3)2次的点数正好是连续的2个整数的概率;
(4)若将2次得到的点数m,n作为点P的坐标,则P落在圆x2+y2=16内的概率.
(1)P=1-
=
…(3分)
(2)第1次为1时,第2次可以为2,3,4,5,6;第1次为2时,第2次可以为3,4,5,6;第1次为3时,第2次可以为4,5,6;第1次为4时,第2次可以为5,6;第1次为5时,第2次可以为6,故P=
=
(3)由分步计数原理知试验发生的总事件数是6×6,2次的点数正好是连续的2个整数包括(1,2)(2,3),(3,4),(4,5),(5,6),(2,1),(3,2),(4,3),(5,4),(6,5)共10种,故P=
=
种;
(4)由题意知是一个古典概型,由分步计数原理知试验发生的总事件数是6×6,而点P落在圆x2+y2=16内包括(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)共8种,∴ P=
=
| 9 |
| 36 |
| 3 |
| 4 |
(2)第1次为1时,第2次可以为2,3,4,5,6;第1次为2时,第2次可以为3,4,5,6;第1次为3时,第2次可以为4,5,6;第1次为4时,第2次可以为5,6;第1次为5时,第2次可以为6,故P=
| 5+4+3+2+1 |
| 6×6 |
| 5 |
| 12 |
(3)由分步计数原理知试验发生的总事件数是6×6,2次的点数正好是连续的2个整数包括(1,2)(2,3),(3,4),(4,5),(5,6),(2,1),(3,2),(4,3),(5,4),(6,5)共10种,故P=
| 5×2 |
| 36 |
| 5 |
| 18 |
(4)由题意知是一个古典概型,由分步计数原理知试验发生的总事件数是6×6,而点P落在圆x2+y2=16内包括(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)共8种,∴ P=
| 8 |
| 36 |
| 2 |
| 9 |
练习册系列答案
相关题目