题目内容
在区间[0,1]上随机取两个数m,n,则关于函数f(x)=| 4 | 3 |
分析:本题考查的知识点是几何概型的意义,关键是要找出函数f(x)=
mx2-nx+1在[1,+∞)上为增函数时,点(m,n)对应的平面区域面积的大小,及m∈[0,1],n∈[0,1]时,点(m,n)对应的平面区域面积的大小,并将它们代入几何概型计算公式进行解答.
| 4 |
| 3 |
解答:
解:∵函数f(x)=
mx2-nx+1
∴y'=4mx2-n,
若函数f(x)=
mx2-nx+1在[1,+∝)上为增函数
则y'=4mx2-n≥0在[1,+∝)上恒成立,
即4m-n≥0,其对应的平面区域如下图中阴影所示:
则函数y=
mx3-nx+1在[1,+∝)上为增函数的概率P=
=
=
故答案为:
.
| 4 |
| 3 |
∴y'=4mx2-n,
若函数f(x)=
| 4 |
| 3 |
则y'=4mx2-n≥0在[1,+∝)上恒成立,
即4m-n≥0,其对应的平面区域如下图中阴影所示:
则函数y=
| 2 |
| 3 |
| S阴影 |
| S正方形 |
1-
| ||
| 1 |
| 7 |
| 8 |
故答案为:
| 7 |
| 8 |
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
求解.
| N(A) |
| N |
练习册系列答案
相关题目
已知函数
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
| x | 0 | 0.1 | 0.2 | 0.5 | 0.8 | 1 | 1.2 | 1.5 | 1.8 | 2 | 4 | 6 | … |
| y | 0 | 0.396 | 0.769 | 1.6 | 1.951 | 2 | 1.967 | 1.846 | 1.698 | 1.6 | 0.941 | 0.649 | … |
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式
已知函数
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式
.
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
| x | 0.1 | 0.2 | 0.5 | 0.8 | 1 | 1.2 | 1.5 | 1.8 | 2 | 4 | 6 | … | |
| y | 0.396 | 0.769 | 1.6 | 1.951 | 2 | 1.967 | 1.846 | 1.698 | 1.6 | 0.941 | 0.649 | … |
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式