题目内容
设函数f(x)=2sin(ωx+
)(ω>0,x∈R),且以π为最小正周期.
(Ⅰ)求f(
)的值;
(Ⅱ)已知f(
+
)=
,a∈(-
,0),求sin(a-
)的值.
解(Ⅰ)∵T=
=π,∴ω=2,(2分)
∴函数f(x)=2sin(2x+
). (3分)
∴f(
)=2sin(2×
+
)=-2sin
=-
. (5分)
(Ⅱ)∵f(
+
)=
=2sin(a+
)=2cosa,∴cosa=
.(7分)
∵a∈(-
,0),∴sina=-
=-
. (9分)
∴sin(a-
)=sina•cos
-cosa•sin
=
. (12分)
分析:(Ⅰ)由函数的周期 T=
=π,求出ω=2,得到函数f(x)=2sin(2x+
),从而求得f(
)的值.
(Ⅱ)由f(
+
)=
求出cosa,利用同角三角函数的基本关系求出 sina,再由两角差的正弦公式求出 sin(a-
)的值.
点评:本题主要考查利用y=Asin(ωx+φ)的图象性质求函数的解析式,三角函数的恒等变换及化简求值,两角差的正弦公式的应用,属于中档题.
∴函数f(x)=2sin(2x+
∴f(
(Ⅱ)∵f(
∵a∈(-
∴sin(a-
分析:(Ⅰ)由函数的周期 T=
(Ⅱ)由f(
点评:本题主要考查利用y=Asin(ωx+φ)的图象性质求函数的解析式,三角函数的恒等变换及化简求值,两角差的正弦公式的应用,属于中档题.
练习册系列答案
相关题目